
MEDIUM POWER AUDIO DRIVERS

DESCRIPTION

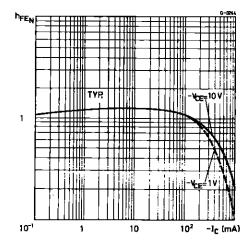
The BC303 and BC304 are silicon planar epitaxial PNP transistors in TO-39 metal case. They are intended particularly as audio driver stages in commercial and professionnel equipments. In addition they are useful as high speed saturated switches and general purpose amplifiers. The complementary NPN types are respectively the BC301 and BC302.

ABSOLUTE MAXIMUM RATINGS

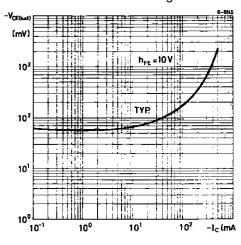
Cumbal		Va	Unit	
Symbol	Collector-base Voltage ($I_E = 0$) -85 Collector-emitter Voltage ($I_B = 0$) -60 Emitter-base Voltage ($I_C = 0$)		C303 BC304	
V _{CBO}	Collector-base Voltage (I _E = 0)	- 85	- 60	V
V _{CEO}	Collector-emitter Voltage (I _B = 0)	- 60	- 45	V
V_{EBO}	Emitter-base Voltage (I _C = 0)	_	- 6	
Ic	Collector Current	- 0.5		Α
I _{CM}	Collector Peak Current	- 0.5 - 1		Α
I_{BM}	Base Peak Current	- 0.5		Α
P _{tot}	Total Power Dissipation at $T_{amb} \le 25$ °C at $T_{case} \le 25$ °C	0.85 6		W W
T _{stg}	Storage Temperature	- 65 t	o 175	°C
Tj	Junction Temperature	17	°C	

December 1988 1/5

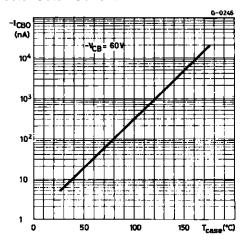
THERMAL DATA

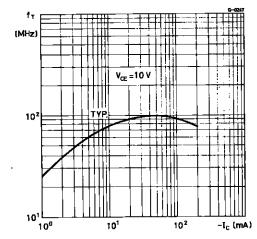

Г	R _{th j-case}	Thermal Resistance Junction-case	Max	25	°C/W
	R _{th j-amb}	Thermal Resistance Junction-ambient	Max	175	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

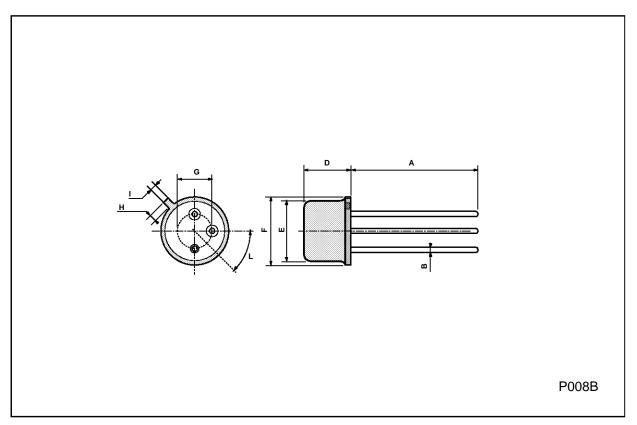

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cutoff Current (I _E = 0)	$V_{CB} = -60 \text{ V}$			- 5	- 20	nA
I _{EBO}	Emitter Cutoff Current (I _C = 0)	$V_{EB} = -5 V$				- 20	nA
V _(BR) CEO *	Collector-emitter Breakdown Voltage $(I_B = 0)$	I _C = - 10 mA	For BC303 For BC304	- 60 - 45			V V
V _{CE (sat)} *	Collector-emitter Saturation Voltage	$I_{C} = -150 \text{ mA}$ $I_{B} = -15 \text{ mA}$			-0.25	- 0.65	V
V _{BE} *	Base-emitter Voltage	$I_C = -150 \text{ mA}$	$V_{CE} = -10 \text{ V}$		- 0.78		V
h _{FE} *	Gr.5	$I_C = -150 \text{ mA}$ $I_C = -150 \text{ mA}$ $I_C = -150 \text{ mA}$ $I_C = -0.1 \text{ mA}$ $I_C = -500 \text{ mA}$	$V_{CE} = -10 \text{ V}$ $V_{CE} = -10 \text{ V}$ $V_{CE} = -10 \text{ V}$	40 70 120 20 20		80 140 240	
f⊤	Transition frequency	I _C = - 50 mA f = 100 MHz	V _{CE} = - 10 V		100		MHz
C _{CBO}	Collector-base Capacitance	I _E = 0	$V_{CB} = -10 \text{ V}$		15		pF
h _{ie}	Input Impedance	$I_C = -5 \text{ mA}$ f = 1 kHz	$V_{CE} = -10 \text{ V}$		0.9		kΩ
h _{re}	Reverse Voltage Ratio	$I_C = -5 \text{ mA}$ f = 1 kHz	$V_{CE} = -10 \text{ V}$		1.7x10 ⁻⁴		
h _{fe}	Small Signal Current Gain	$I_C = -5 \text{ mA}$ f = 1 kHz	V _{CE} = - 10 V		140		
h _{oe}	Output Admittance	$I_C = -5 \text{ mA}$ f = 1 kHz	V _{CE} = - 10 V		45		μs

^{*} Pulsed : pulse duration = $300\mu s$, duty cycle = 1%.


DC Normalized Current Gain.


Collector-emitter saturation voltage.

Collector Cutoff Current.



Transition Frequency.

TO39 MECHANICAL DATA

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
Н			1.2			0.047	
1			0.9			0.035	
L	45° (typ.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

